

Uncrewed Surface Vehicles (USV) technologies in support to EOOS

C.Waldmann

J. Tasso-Sousa

J. Burris

PLOCAN Plataforma Oceánica de Canarias

Service Booterno de Canarias

<u>C. Barrera & A. Cianca</u>

L. Grare

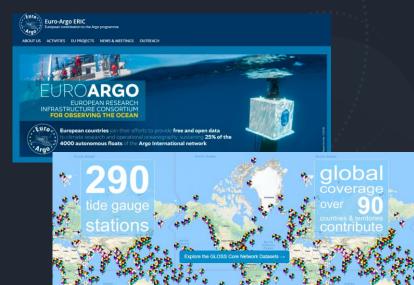
Virtual – March 22nd & 23rd 2022

EuroSea

Organized by: 🙈 EuroGOOS

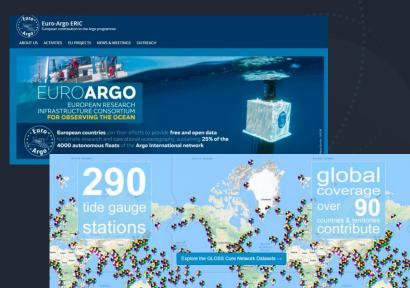
inported by: EureSea 🖌 MINKE

- Floats
- Moorings
- UW-gliders
- Research Vessel
- Sea-Level Gauges
- HF Radar
- FerryBox
- Animal-borne Instrument



emso

- Floats
- Moorings
- UW-gliders
- Research Vessels
- Sea-Level Gauges
- HF Radar
- FerryBox
- Animal-borne Instrument

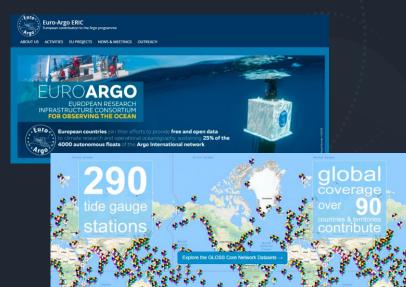


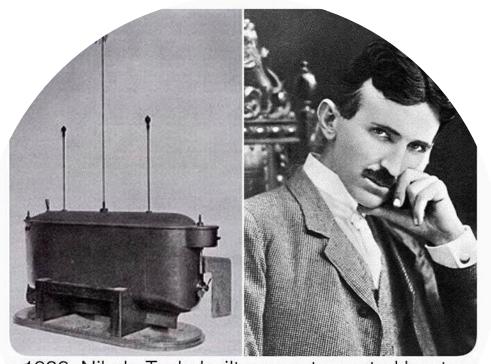
emso

• Floats

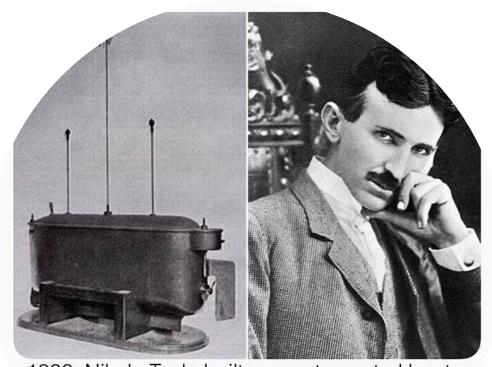
• Moorings

- UW-gliders
- Research Vessels
- Sea-Level Gauges
- HF Radar
- FerryBox
- Animal-borne Instruments
- Uncrewed Surface Vehicles -US




emso

What exactly is an Uncrewed Surface Vehicle?


USV-tech SoA in brief...

n 1898, Nikola Tesla built a remote control boat an 'splayed it in Madison Square Garden. The crov ought that he was controlling it with his mind a trained monkey was inside. When Tesla otion of the crowd, he decided to trive 'solution that they could control to the control t

1898

USV-tech SoA in brief...

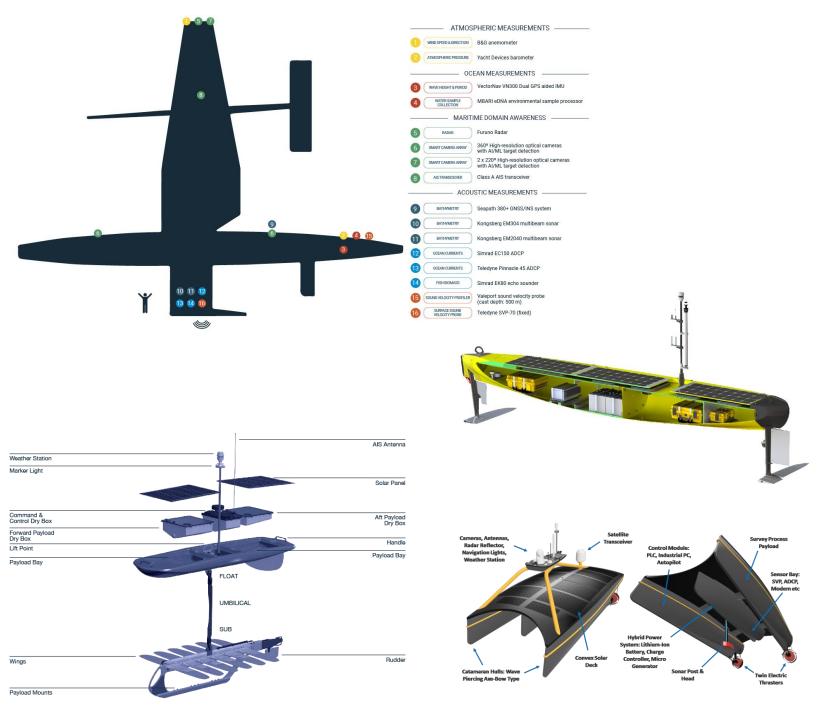
n 1898, Nikola Tesla built a remote control boat an 'splayed it in Madison Square Garden. The crov ought that he was controlling it with his mind a trained monkey was inside. When Tesla otion of the crowd, he decided to trive 'solution that they could control to the control t

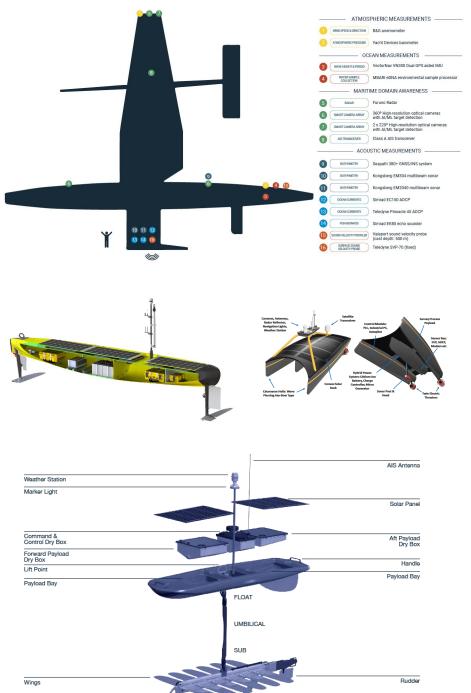
Country	Year	USV Name	Research Purpose & Major Achievements
	1993	ARTEMIS (Vaneck et al., 1996)	1) Systems test; 2) Bathymetry sampling
USA	1996	ACES (Manley, 1997)	1) Oceanographic data collection
	1998	SCOUT (Goudey et al., 1998)	1) Cooperative control; 2) Testbed
	1990 <i>s</i>	Roboski (Bremer et al., 2007)	1) Surveillance; 2) Target drones
	1990 <i>s</i>	Owls USVs (Motwani, 2012)	1) Harbor and ship security
	2000	AutoCat (Manley et al., 2000)	1) Survey of shipwreck
	2001	Spartan Scout (Motwani, 2012)	1) Port surveillance; 2) Force protection
	2003	USSV-HTF (Motwani, 2012)	1) Towing various sensors and effectors
	2005	WASP (Mahacek, 2005)	1) Stability test; 2) Bathymetric mapping
	2005	Seadoo Challenger 2000 (Ebken et al., 2005)	1) Collision avoidance; 2) Autonomous recovery
	2005	HUSCy (Curcio et al., 2005)	1) Hydrographic survey
	2008	Wave Glider (Bingham et al., 2012)	1) Data collection
	2008	Nereus (Beck et al., 2009)	1) Stability test; 2) Bathymetric mapping
	2009	SeaWASP (Furfaro et al., 2009)	1) Environmental monitoring; 2) Testbed
	2010	Piranha (Yang et al., 2011)	1) Reconnaissance
	2011	MUSCL (Bertram, 2008)	1) Surveillance and reconnaissance
	1990 <i>s</i>	MIMIR (Roberts & Sutton, 2006)	1) Shallow water search and survey
	2000 <i>s</i>	C-series USVs (Anonymous, 2014a)	1) Assets security; 2) Environmental monitoring; 3) Mining
	2000 <i>s</i>	FENRIR (Roberts & Sutton, 2006)	1) Relay between UUV and control center
UK	2000 <i>s</i>	Sentry (Murray, 2008)	1) Harbor and shore survey and protection
	2003	SWIMS (Roberts & Sutton, 2006)	1) Mine sweeping
	2003	SeaFox (Yakimenko & Kragelund, 2011)	1) Maritime security operations
	2004 2008	Springer (Naeem et al., 2008b) Blackfich (Sonnarburg, 2012)	1) Environment monitoring; 2) Test platform
	1983	Blackfish (Sonnenburg, 2012)	1) Harbor protection and patrol
Canada	2000s	DOLPHIN (Curcio et al., 2005) Barracuda (Bertram, 2008)	 Bathymetric mapping As sea-surface target system
Janaua	2000s	Hammerhead (Bertram, 2008)	1) Simulating a multi-vehicle swarm threat
	20003	SESAMO (Caccia et al., 2005)	1) Environmental sampling
	2005	Charlie (Caccia et al., 2007)	1) Environmental sampling and survey
Italy	2005	ALANIS (Bibuli et al., 2007)	1) Environmental sampling and survey
	2008	U-Ranger (Motwani, 2012)	1) Mine sweeping; 2) Harbor protection
	2000	CARAVELA (Pascoal et al., 2006)	1) Oceanographic sampling; 2) Testbed
	2004	DELFIM (Alves et al., 2006) and DELFIMX	1) Oceanographic sampling; 2) Communication with UUVs
Portugal		(Gomes et al., 2006)	
e	2006	ROAZ I & II (Martins et al., 2007a)	1) Search and rescue
	2006	Swordfish (Ferreira et al., 2007)	1) Environmental survey
	2008	Kaasbøll (Breivik et al., 2008)	1) Navigation and control systems test
Norway	2008	Viknes (Breivik, 2010)	1) Multi-purpose system tests
	2000 <i>s</i>	Mariner (Breivik, 2010)	1) Environmental surveillance and sampling
	2003	Protector (Breivik et al., 2008)	1) Reconnaissance; 2) Counter-mine
srael	2005	Seastar (Yang et al., 2011)	1) Port, coastal survey; 2) Reconnaissance
Israer	2005	Stingray (Bertram, 2008)	 Homeland security and coastguard
	2007	Silver Marlin (Bertram, 2008)	 Surveillance and reconnaissance
Germany	1998	MESSIN (Majohr & Buch, 2006)	1) Water ecological study
France	2005	Basil (Bertram, 2008)	1) Offshore pipelines survey
	2005	MiniVAMP (Bertram, 2008)	 Remote survey of offshore pipelines
	2007	Inspector (Yang et al., 2011)	1) Surveillance and reconnaissance
Sweden	2002	Piraya (Yang et al., 2011)	1) Cooperative control
Singapore	2010	Venus (Bertram, 2008)	1) Multi-tasks test
China	2008	Tianxiang One (Yan et al., 2010)	1) Meteorological survey
	2010	USV-ZhengHe (Yang et al., 2011)	1) Inshore marine data collection
lapan	2000	Kan-Chan (Desa et al., 2007)	1) Study of global warming
-	2004	UMV series (Bertram, 2008)	1) Ocean and atmosphere exploration
India	2006	ROSS (Desa et al., 2007)	1) Oceanographic sampling

Liu et al. 2016

Propulsion mainly based on electrical thrusters powered in addition by sunlight in some cases.

Short-médium range endurance (hours/days) missions near shore areas.





Why USV are key for Ocean-Observing?

Payload Mounts

GCOS Essential Climate Variables

Sea Surface Temperatu

agrass Cover and C

Stable Carbon Isotopes

Subsurface Currents

Subsurface Salinity

Zooplankton Biomass And Diversity

Fish Abundance And Distribut Hard Coral Cover And Composit Sea Ice Sea State Inorganic Car Sea Surface Height vertebrate Abundance And Distribution (emergin Sea Surface Salinity Macroalgal Canopy Cover And Compos Mangrove Cover And Compo Marine Turtles, Birds, Mammals Abundance And Distribut Microbe Biomass And Diversity (emergin Nutrion Nitrous C Ocean C Ocean S Ocean Surface Heat Fl ansient Tracers Ocean Surface Stres

Охудел

Propulsion based on ocean-energy sources (mainly waves, wind) and sunlight. Highly capables to increase persistent-presence in the ocean in a more sustainable and efficient routine-mode operation. Long-range (weeks/months) missions in both coastal and open-ocean areas.

2019-2020 Atlantic to Mediterranean (ATL2MED)

MON2EE Parts Oceanic Bury

ESTOC Open-Station ANTAGES Ocean Station LICK Ocean Station

Lat Autoromous Passage

de

Street of Gibralton

 Detailer 18, 2018

A public private personality that area to contribute to a greater under deeding of the impacts as the income ecception and duration a bottle appendiancing of the policy ecceptions enjoyed of a individual device provide costs processes, and dimensional energy of the community stated on the Adaptive and Medianes even

SALDRONE

CV00 Doesn Station ONFAARD Over Italian Nor Calif Saldor - Cale Inter Companies

> Anillar talanda vicit anic Impact fazivny

Count Station Micare are (MAMBER) Count Station Remember Station July 17, 2020

PACOMA Ocean Ittabox

E2M3A Ocean Station National Salthone Child Fiber Comparison

2019-2020 ATL2MED Mission Stats

Seawater xC02 (ppm)

Mission duration	274 days (October 18, 2019 to July 17, 2020)
Distance sailed	15,015 nautical miles (27,810 kilometers or 17,280 miles) – both vehicles combined
Average vehicle speed	2–3 knots (average human walking pace)
Ocean stations visited	9
Data collected	Carbon, (pCO ₂), acidity, current velocity & direction, wind speed & direction, relative humidity, barometric pressure, air & sea temperature, salinity, dissolved oxygen, chlorophyll, wave height & period, acoustic backscatter

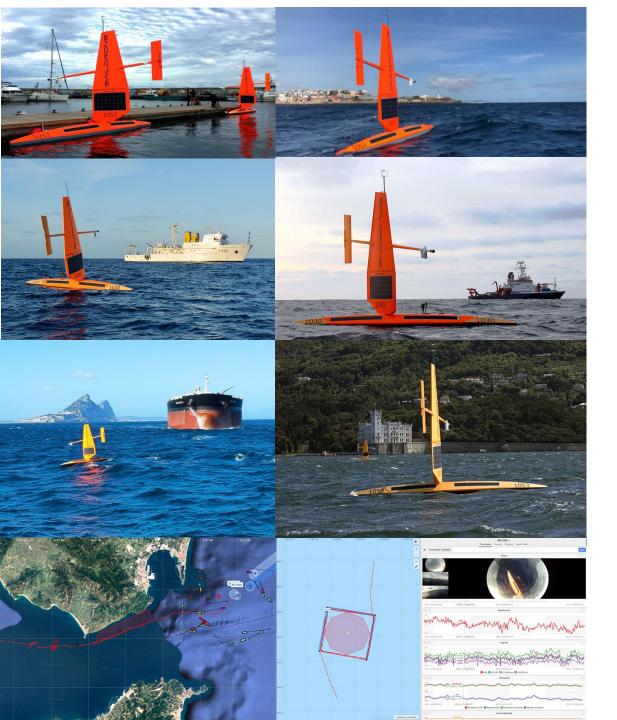
MISSION COLLABORATORS

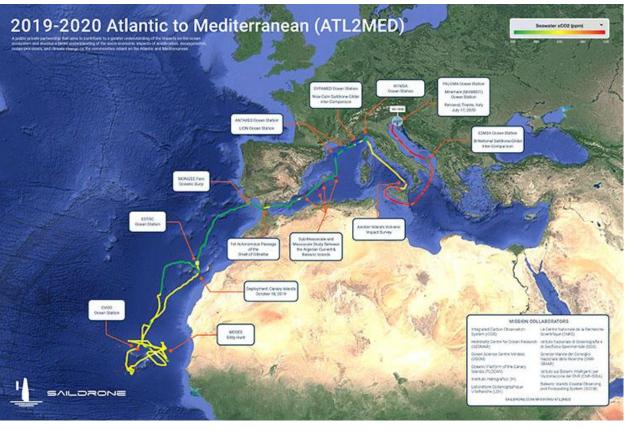
Integrated Carbon Observation	Le Centre Nationale de la Recherche
System (ICOS)	Scientifique (CNRS)
Helmholtz Centre for Ocean Research	Istituto Nazionale di Oceanografia e
(GEOMAR)	di Geofisica Sperimentale (OGS)
Ocean Science Centre Mindelo	Scienze Marine del Consiglio
(OSCM)	Nazionale delle Ricerche (CNR-
Oceanic Platform of the Canary Islands (PLOCAN)	ISMAR) Istituto sui Sistemi Intelligenti per l'Automazione del CNR (CNR-ISSIA)
Instituto Hidrográfico (IH)	. ,
Laboratoire Océanographique	Balearic Islands Coastal Observing
Villefranche (LOV)	and Forecasting System (SOCIB)

SAILDRONE.COM/MISSIONS/ATL2MED

Sub-Meeterbale and

Associate Study Detwee


the Algorian Current &


Balance Interde

Eur**e Sea**

- SAILDRONE

ICOS INTEGRATED CARBON OBSERVATION SYSTEM emso ERIC

- Technology level (TRL) already well developed and mature.
- Huge Tech&Operational capabilities /uses.
- Wide range of applications/services for key marine and maritime sectors on ocean observing, survey, intervention, etc. already underway.

Clear lack at NETWORK level

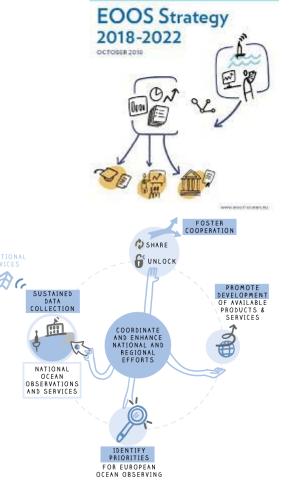
Technical# Operations / Missions# Data/Metadata

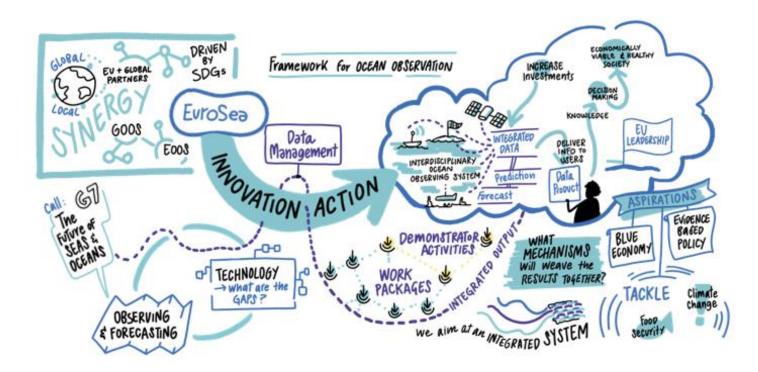
Legal framework# Best Practices / Standards# ...

EuroGOOS 2030 Strategy 2030

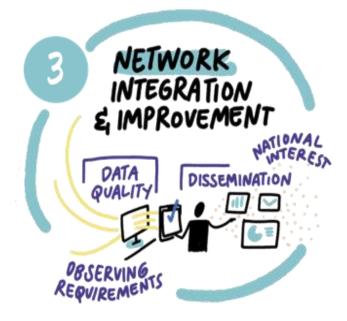
Towards an end-to-end, integrated and sustained ocean observing system for Europe

WWW.BOOD-OCEARLINE


Consultation Document

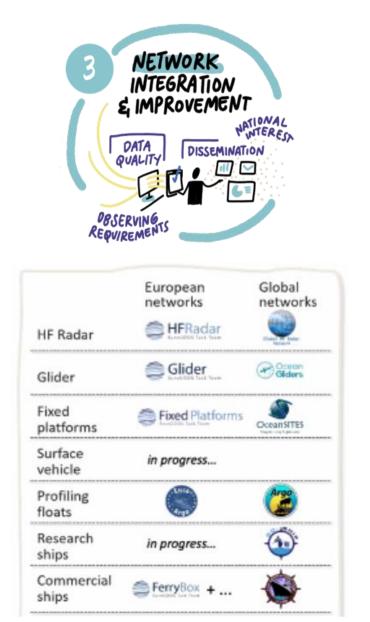


ALIGNING, INTEGRATING AND PROMOTING EUROPE'S OCEAN OBSERVING CAPACITY



Eur Sea

WP3 – Task 3.7 Autonomous Surface Vehicles Network


1) ASV-Network definition and roadmap addressed to cover current and future user's needs, including access to infrastructures, community roadmap monitoring, promoting knowledge exchange, enhancement and partnership worldwide with the establishment of an ASV User Group.

2) Improvements on Standard Operating Procedures (SOP) for derived Best Practices (BP) implementation on operational protocols, data management, knowledge transfer, risk assessment, legislation, etc. in order to properly improve the ASV technology, contributing to the EOOS implementation plan.

3) Two workshops will be organized aiming at ASV technology - challenges, opportunities and user engagement, and ASV technology - BP implementation.

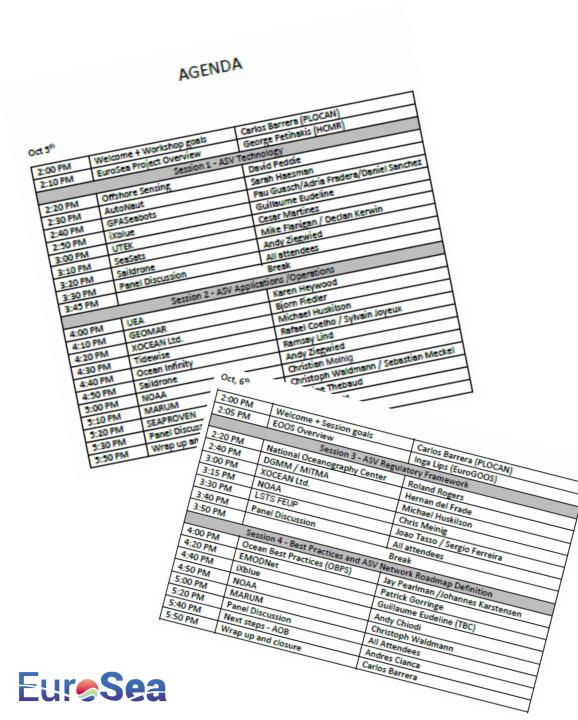
Eurosea Gathering more Knowledge for a Sustainable Use of the Ocean through a Multiplatform-Network approach based on cutting-edge Observing Technologies

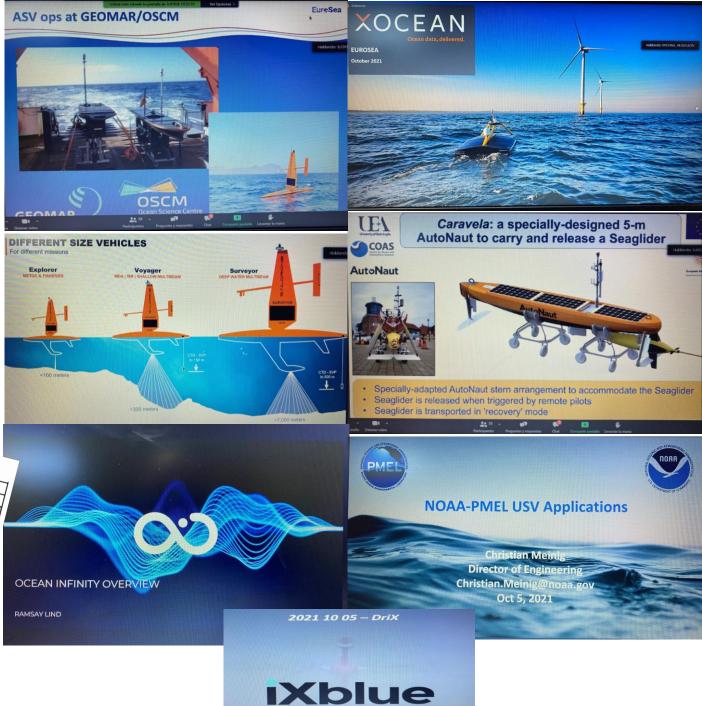
WP3 – Network Integration and Improvement

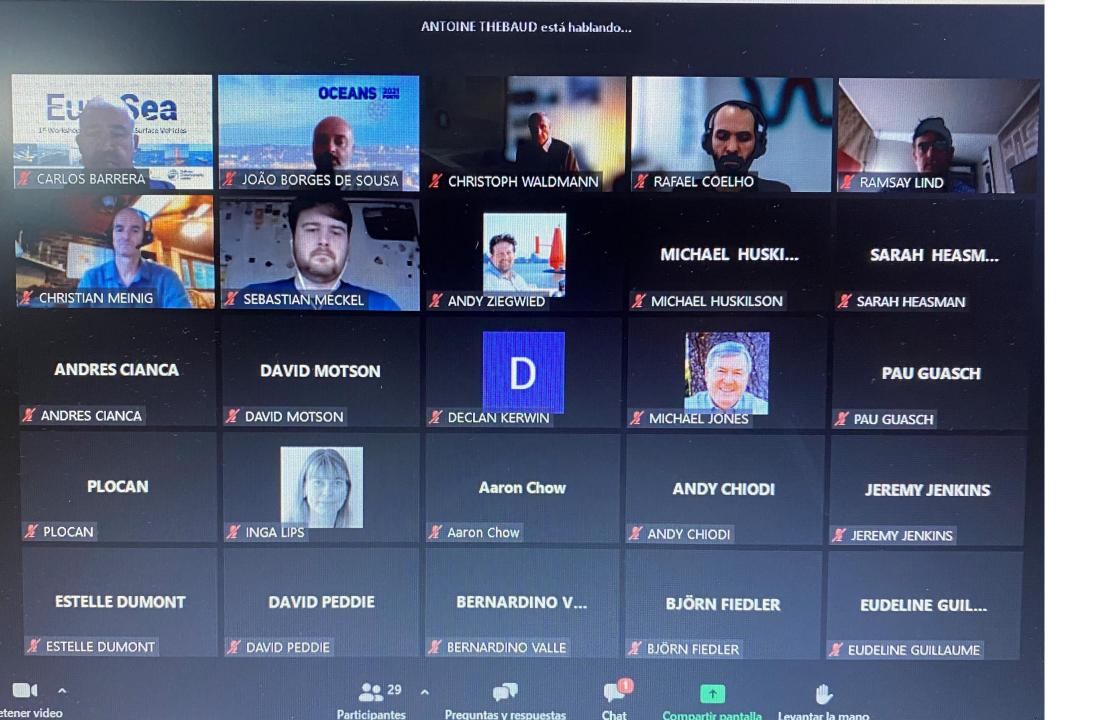
Task 3.7

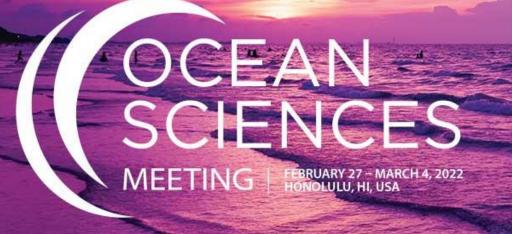
Autonomous Surface Vehicles (ASV) Network

1st Workshop (online) October 5th – 6th, 2021









1st USV WS - Main preliminary outcomes

- Great level of interest, attendance and contribution from current key USV-community members representing the "triplehelix" perspective (industry, academia/science and governance). Some other key members unable to attend but committed with future activities.
- The USV technology is already well developed and mature (TRL 8-9) in many cases.
- Huge technological and operational capabilities to cover in a synergistic way current ocean-observing gaps, being two of the main ones (1) to be able to monitor essential climate variables (ECV) and essential ocean variables (EOV) at the same time on an unprecedented space-time scale, and (2) act as gateway to link in real-time underwater observations with satellite platforms.
- Several helpful synergies already identified (and tested) with **other ocean-observing platforms** (fixed and mobile).
- Wide range of applications/services for several Blue Growth sectors on ocean-observing, survey, intervention, border security, etc. some of them already implemented in routine mode.
- Several technologies already as commercial product (important difference from other ocean-observing technologies).
- Risk assessment and management system is key.
- Clear lack at network level (main motivation to undertake this initiative under EuroSea project) from key aspects like technical -platforms and subsystems components-, coordinated operations/missions, data/metadata, legal framework (links with IMO/MASS strategy), best practices and standards, etc.

OT05 - Uncrewed Surface Vehicles (USVs) Technology Trends and Improvements on Observing Applications for the Ocean Decade

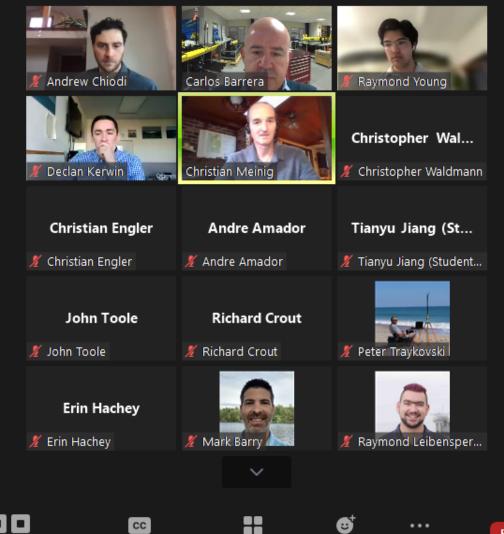
March 2nd 2022 – 3:00-4:00 PM CET (Room 9) // 4:00-5:00 PM CET (Room 28) https://www.aslo.org/osm2022/scientific-sessions/#ot

Desactivar audio

Detener vídeo

Seguridad

🗰 Vista


Participantes

Votaciones

Chat

Compartir pantalla

Pausar/detener grabación

Reacciones

Más

Transcripción en vivo Sección de Grupos

USV Developments

Andrew Tyre

Industrial Strategy Challenge Director - Robotics, UKRI

Cinternational 2022 ISIN MARCH 2022 INNOR, EXCEL Sponsored by AUTONAUT

Carlos BarreraMichael KingHead of theSenior BusinessOcean VehiclesDevelopmentUnit - OceanicManager -

Platform of the Ocean Infinity Canary Islands (PLOCAN)

Stephane Vannuffelen

Marine Autonomy Technical Director - IxBlue

Stephen Thomso Business Development Manager Renewables -Fugro

Uncrewed Surface Vehicles (USV) technologies in support to EOOS

FEUP FACULDADE DE ENCENHAA FEUP FACULDADE DO FORTO J. Tasso-Sousa

Deeanography Centre ITUTAL ENVIRONMENT RESEARCH COUNCE J. Burris PLCCAN

C. Barrera

ā — ā.... **D** à

2022

London – March 15nd 2022

29 companies exhibiting USV tech!!!

Any questions?

Eur Sea

Thank you