Developing new and scalable technologies for observations of life in the sea

Francisco Chavez
Monterey Bay Aquarium Research Institute

OBON OBJECTIVES

1) Build a coastal-to-open ocean multi-omics biodiversity observing system; include biomolecular analysis in long term observation systems; **develop autonomous sampling and analysis capability**

2) Enhance marine ‘omics’ data systems and enhance ecosystem models by adding biomolecular components

3) Partner with marine conservation and management specialists, policymakers, private sector and to address sustainable development

4) Develop and transfer capacity through training programs combined with funded equipment programs supported by development/aid agencies and philanthropy
Traditional Approach to Biodiversity Monitoring

- Go to sea on a ship or from shore
- Bring samples to ship and/or shore
- Process samples via laboratory analysis (species and abundance, etc.)
- Synthesize information over years
A new set of requirements

- Near real-time information (i.e. moorings on the TOGA-TAO array are used to track El Niño) requires continuous presence.
- Globally distributed information (i.e. Argo floats track the distribution of heat and salt) requires smaller and lower cost platforms.
- Multidisciplinary (wind to microbes to whales) real-time and global information (i.e. how can we tell if Life in the Sea is changing and why), requires a new model.
- Emerging technology: environmental DNA.
Environmental DNA (eDNA) a cheaper, less invasive and scalable approach to observe life in the sea

Examples to follow
Vertical distributions of life in the sea just like temperature, salinity and oxygen.
Marine regime shift

Changes over time

Samples from Sea surface temperature

2008-2018 time series

Identified using eDNA

Pitz et al. in prep
eDNA automation: Long Range AUVs and Argo floats with eDNA sensors
A new window for observing life in the sea

~14 days, 945 km at full speed, 1800 km on primaries

Sampled/Aux Assay Cartridges

Environmental Sample Processor

5 day drift at 12 C September 2018

Sequence onboard in the future

Courtesy of ESP AND LRAUV teams
The future: eDNA sequencing and bioinformatics *in situ* at sea

(A) Sample collection and DNA extraction on autonomous systems

(B) PCR + library prep

(C) Use a miniature device to sequence DNA

(D) Bioinformatics at sea with species ID using GPU processing

(E) Information telemetered to shore (for real time decisions)

- California Anchovy: 1,789,385 reads
- Rockfish sp.: 1,018,542 reads
- Humpback Whale: 372 reads
eDNA wheel and co-design

- The system improves over time with feedback from users, as methods develop and become more efficient, libraries grow, and technology advances.
Summary

- Environmental DNA is a powerful new tool for observing life in sea
- Supports a wide variety of applications, from scientific discovery to applied management
- Challenges remain but tremendous opportunities ahead including routine global observations of marine biodiversity

Contact: chfr@mbari.org
OBON PARTNERS

- 30 universities
- 48 research institutes
- 12 government agencies (US and non-US)
- 9 non-profit organizations
- 21 established research programs
- 2 corporations
- 4 other UN-endorsed UN Decade programmes – so far
- 38 nations represented