European Ocean Observing System

Strategy 2023-2027 launch

Organised by:

Regions with sparse observations - the Arctic

Agnieszka Beszczynska-Möller

Institute of Oceanology PAS, Poland

(ArcticROOS, Atlantic-Arctic DBO, IASC MWG, SAON Board, EU H2020 INTAROS, EU HE HiAOOS)

Thursday, 2 March 2023

In situ observations are extremely sprase in the Arctic Ocean and Arctic seas as compared to other regions

European Ocean Observing System

Challenges of Arctic observing

- Scales
- Different needs for climate, operational forecast, constraining models, process studies,...
- Access
- Physical remote, harsh environment, sea ice
- Political critical areas within national EEZs
- Technological ice prevents access to critical services (GPS, Iridium), low temperatures, high risk to platforms and sensors
- Coordination
- Scientific coverage, protocols, priorities
- Logistics complex, costly, high risk operations
- Data and product delivery timely data provision for services, data curation
- Scalability/Flexibility
- Sustaining long-term integrated measurements
- Different needs from climate to tactical
- Evolving with changing environment

EuroGOOS European Global Ocean Observing System

Arctic observations are growing in number but still underrepresented in the main global ocean networks

European Ocean Observing System

Generated by ocean-ops.org

Sustained Mooring Deployments

OceanSITES

Argo

Most of operational data provided by the ice-based platforms drifting in the ice covered Arctic regions

European Ocean Observing System

Generated by ocean-ops.org

Drifting buoys providing data to the GTS

https://iabp.apl.uw.edu/IABP OceanMap.html

European Arctic observation networks are fragmented and only weakly connected to global and other regional observing systems...

> EU Polar Cluster

DBOs

Basin-wide, **Established and developing** international, under development, DS-DBO stations A-DBO, candidate site interdisciplinary, *bottom-up initiative* Longterm stations, selected Longterm stations, fiords DBO Transect lines (tentative) A-DBO Core sampling sites (tentative)

Atlantic Arctic Distributed Biological Observatory (A-DBO)

EU Polar Cluster projects with the focus on an Arctic (including ocean) observing systems: **INTAROS, Arctic PASSION,** HiAOOS, ...

European Ocean Observing System

Existing and emerging initiatives and processes on better integration and coordination of a (pan)Arctic ocean observing system

European Ocean Observing System

- Arctic ROOS Arctic Regional Ocean Observing System – a regional node under EuroGOOS, the European Global **IBI-ROOS Ocean Observing System** The Global Ocean Observing System PI-GOOS
- SAON (Sustained Arctic Observing Networks) ROADS (Roadmap for Arctic Observing and Data System) process – cross-domain, high level planning, strong links to Arctic Council and IASC, based on SBA value tree analysis and developing Shared Arctic Variables (SAVs)
- EuroGOOS and ArcticROOS initiative (in partnership with other groups and networks) of developing a pan-Arctic alliance for ocean and sea ice observing, with the possibility of establishing it as a GOOS Regional Alliance (GRA) in the future – advanced with the roundtable discussion during ASSW2023
- IASC MWG Strategic Plan defining research priorities to support implementation of the UN DOS Arctic Action Plan - establishing an Arctic Regional Programme Office, potentially developing into an Arctic DCC (Decade Collaborative Centre)
- Contributions to ICARP IV (2022-2026) and 5th IPY (2032-2033)

How can an Arctic observing system be improved with a coordinated European Ocean Observing System?

European Ocean Observing System

- Better recognize users and stakeholders needs and priorities for Arctic data and products
- Improve uptake and integration of Arctic data into services and products

- Exchange and adapt best practices for specific requirements of data collection, operations and technology in the Arctic
- Promote FAIR sharing of Arctic data/products by enhancing their availability through EOOS related services (EMODnet, SDN, CMEMS)

- Improve overview of ocean observing networks in the European Arctic, include them in the performance monitoring
- Enhance visibility and accessibility of Arctic observing assets in OceanOPS

- Help to improve integration between coastal observing and deep ocean and between physical, biogeochemical and biological observatories
- Establish dialog and align activities with different organizations/initiatives focused on coordination and integration of Arctic observing

- Forster and promote innovations and technology developments critical for Arctic ocean observing
- Include needs and requirements for Arctic-capable technologies when in dialogue with developers and suppliers

- Identify and communicate societal/economical value and benefits of including Arctic observations in the EOOS value chain
- Identify and explore synergies between EuroGOOS and a potential future Arctic GRA

